Het gebruik van Q10 bij levensverlenging
Geschiedenis en werking van Q10
- INTRODUCTION TO COENZYME Q10
Coenzyme Q10 (CoQ 10) or ubiquinone is essentially a vitamin or vitamin-like substance. Disagreements on nomenclature notwithstanding, vitamins are defined as organic compounds essential in minute amounts for normal body function acting as coenzymes or precursors to coenzymes. They are present naturally in foods and sometimes are also synthesized in the body. CoQ10 likewise is found in small amounts in a wide variety of foods and is synthesized in all tissues. The biosynthesis of CoQ10 from the amino acid tyrosine is a multistage process requiring at least eight vitamins and several trace elements. Coenzymes are cofactors upon which the comparatively large and complex enzymes absolutely depend for their function. Coenzyme Q10 is the coenzyme for at least three mitochondrial enzymes (complexes I, II and III) as well as enzymes in other parts of the cell. Mitochondrial enzymes of the oxidative phosphorylation pathway are essential for the production of the high-energy phosphate, adenosine triphosphate (ATP), upon which all cellular functions depend. The electron and proton transfer functions of the quinone ring are of fundamental importance to all life forms; ubiquinone in the mitochondria of animals, plastoquinone in the chloroplast of plants, and menaquinone in bacteria. The term "bioenergetics" has been used to describe the field of biochemistry looking specifically at cellular energy production. In the related field of free radical chemistry, CoQ10 has been studied in its reduced form (Fig. 1) as a potent antioxidant. The bioenergetics and free radical chemistry of CoQ10 are reviewed in Gian Paolo Littarru's book, Energy and Defense, published in 1994(1). - Human aging and global function of coenzyme Q10
In this paper, we review two parts of our recent work on human skeletal muscle. The first part mainly describes changes occurring during aging, whereas the second part discusses the functions of coenzyme Q10 (CoQ10), particularly in relation to the aging process. During the lifetime of an individual, mtDNA undergoes a variety of mutation events and rearrangements. These mutations and their consequent bioenergenic decline, together with nuclear DNA damage, contribute to the reduced function of cells and organs, especially in postmitotic tissues. In skeletal muscle, this functional decline can be observed by means of changes with age in fiber type profile and the reduction in the number and size of the muscle fibers. In addition to the functions of coenzyme Q10 as an electron carrier in the respiratory chain and as an antioxidant, CoQ10 has been shown to regulate global gene expression in skeletal muscle. We hypothesize that this regulation is achieved via superoxide formation with H2O2 as a second messenger to the nucleus. - Coenzyme Q10: its biosynthesis and biological significance in animal organisms and in humans
Coenzyme Q10 (ubiquinone) is a naturally occurring compound widely distributed in animal organisms and in humans. The primary compounds involved in the biosynthesis of ubiquinone are 4-hydroxybenzoate and the polyprenyl chain. An essential role of coenzyme Q10 is as an electron carrier in the mitochondrial respiratory chain. Moreover, coenzyme Q10 is one of the most important lipophilic antioxidants, preventing the generation of free radicals as well as oxidative modifications of proteins, lipids, and DNA, it and can also regenerate the other powerful lipophilic antioxidant, alpha-tocopherol. Antioxidant action is a property of the reduced form of coenzyme Q10, ubiquinol (CoQ10H2), and the ubisemiquinone radical (CoQ10H*). Paradoxically, independently of the known antioxidant properties of coenzyme Q10, the ubisemiquinone radical anion (CoQ10-) possesses prooxidative properties. Decreased levels of coenzyme Q10 in humans are observed in many pathologies (e.g. cardiac disorders, neurodegenerative diseases, AIDS, cancer) associated with intensive generation of free radicals and their action on cells and tissues. In these cases, treatment involves pharmaceutical supplementation or increased consumption of coenzyme Q10 with meals as well as treatment with suitable chemical compounds (i.e. folic acid or B-group vitamins) which significantly increase ubiquinone biosynthesis in the organism. Estimation of coenzyme Q10 deficiency and efficiency of its supplementation requires a determination of ubiquinone levels in the organism. Therefore, highly selective and sensitive methods must be applied, such as HPLC with UV or coulometric detection. - Research on coenzyme Q10 in clinical medicine and in immunomodulation
Coenzyme Q10 (CoQ10) is a redox component in the respiratory chain. CoQ10 is necessary for human life to exist; and a deficiency can be contributory to ill health and disease. A deficiency of CoQ10 in myocardial disease has been found and controlled therapeutic trials have established CoQ10 as a major advance in the therapy of resistant myocardial failure. The cardiotoxicity of adriamycin, used in treatment modalities of cancer, is significantly reduced by CoQ10, apparently because the side-effects of adriamycin include inhibition of mitochondrial CoQ10 enzymes. Models of the immune system including phagocytic rate, circulating antibody level, neoplasia, viral and parasitic infections were used to demonstrate that CoQ10 is an immunomodulating agent. It was concluded that CoQ10, at the mitochondrial level, is essential for the optimal function of the immune system.
Q10 vermindert schade aan DNA
- Life-long supplementation with a low dosage of coenzyme Q10 in the rat: effects on antioxidant status and DNA damage
Life-long low-dosage supplementation of coenzyme Q(10) (CoQ(10)) is studied in relation to the antioxidant status and DNA damage. Thirty-two male rats were assigned into two experimental groups differing in the supplementation or not with 0.7 mg/kg/day of CoQ(10). Eight rats per group were killed at 6 and 24 months. Plasma retinol, alpha-tocopherol, coenzyme Q, total antioxidant capacity and fatty acids were analysed. DNA strand breaks were studied in peripheral blood lymphocytes. Aging and supplementation led to significantly higher values for CoQ homologues, retinol and alpha-tocopherol. No difference in total antioxidant capacity was detected at 6 months but significantly lower values were found in aged control animals. Similar DNA strand breaks levels were found at 6 months. Aging led to significantly higher DNA strand breaks levels in both groups but animals supplemented with CoQ(10) led to a significantly lower increase in that marker. Aged rats showed significantly higher polyunsaturated fatty acids. This study demonstrates that lifelong intake of a low dosage of CoQ(10) enhances plasma levels of CoQ(9), CoQ(10), alpha-tocopherol and retinol. In addition, CoQ(10) supplementation attenuates the age-related fall in total antioxidant capacity of plasma and the increase in DNA damage in peripheral blood lymphocytes. - Human aging and global function of coenzyme Q10
In this paper, we review two parts of our recent work on human skeletal muscle. The first part mainly describes changes occurring during aging, whereas the second part discusses the functions of coenzyme Q10 (CoQ10), particularly in relation to the aging process. During the lifetime of an individual, mtDNA undergoes a variety of mutation events and rearrangements. These mutations and their consequent bioenergenic decline, together with nuclear DNA damage, contribute to the reduced function of cells and organs, especially in postmitotic tissues. In skeletal muscle, this functional decline can be observed by means of changes with age in fiber type profile and the reduction in the number and size of the muscle fibers. In addition to the functions of coenzyme Q10 as an electron carrier in the respiratory chain and as an antioxidant, CoQ10 has been shown to regulate global gene expression in skeletal muscle. We hypothesize that this regulation is achieved via superoxide formation with H2O2 as a second messenger to the nucleus. - In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage
There are at least two ways to explain the effect of antioxidants on the recovery from oxidative DNA damage. Thus, the ability of an antioxidant to enhance the recovery may be due to a stimulation of the activity of repair enzymes or a protection against oxidation. Our results show that both ubiquinol-10 and ubiquinone-10 are capable of reacting with oxygen, as indicated by no additional formation of DNA strand breaks in enriched lymphocytes when exposed to atmosphere. The ability of CoQ10 to increase the DNA repair rate is probably due to an inhibition of additional damage by protecting the cells against further oxidation. Such an effect is likely ascribed to the known antioxidant activity of ubiquinol-10. On the contrary, the capability of ubiquinone-10 to protect DNA from oxidative damage remains unclear. We hypothesize that the enrichment of cells with ubiquinone-10 yielded an ordering and condensing effect on cell membranes, and thus may have restricted the number of radicals capable of reaching the cells’ DNA. The assessment of repair capacity in a sample extract indicates that lymphocytes in vivo enriched with CoQ10 are endowed with a high capacity of DNA repair compared to native cells. Changes in the redox state of transcriptional factors have been proposed as a mechanism regulating the extent of DNA binding activity, which in turn modulates various events occurring in cells, including proliferation and apoptosis. The redox mechanism implicated in enzyme trans-activation could explain the property of ubiquinol-10 in enhancing the DNA repair enzyme activity and protecting DNA from oxidative damage. After CoQ10 supplementation, most of the antioxidant is present in its reduced form in plasma and lymphocytes (85–98% and 65–70%, respectively), and can be involved into redox reactions. In conclusion, we demonstrated the ability of in vitro and in vivo CoQ10 supplementation in inhibiting oxidative DNA damage and enhancing DNA repair enzyme activity in cultured lymphocyte. On the basis of our results and consistent with data previously shown by others, we propose a hypothetical scheme illustrating the preventive role of CoQ10 against DNA damage (Fig. 3 ). However, further investigations will be required to clarify the precise mechanism(s) by which CoQ10 may modulate gene expression of DNA repair enzymes.
Q10 vermindert de schade aan de mitochondria
- Coenzyme Q10 Prevents Apoptosis by Inhibiting Mitochondrial Depolarization Independently of Its Free Radical Scavenging Property
The permeability transition pore (PTP) is a mitochondrial channel whose opening causes the mitochondrial membrane potential collapse that leads to apoptosis. Some ubiquinone analogues have been demonstrated previously to modulate the PTP open-closed transition in isolated mitochondria and thought to act through a common PTP-binding site rather than through oxidation-reduction reactions. We have demonstrated recently both in vitro and in vivo that the ubiquitous free radical scavenger and respiratory chain coenzyme Q10 (CoQ10) prevents keratocyte apoptosis induced by excimer laser irradiation more efficiently than other antioxidants. On this basis, we hypothesized that the antiapoptotic property of CoQ10 could be independent of its free radical scavenging ability and related to direct inhibition of PTP opening. In this study, we have verified this hypothesis by evaluating the antiapoptotic effects of CoQ10 in response to apoptotic stimuli, serum starvation, antimycin A, and ceramide, which do not generate free radicals, in comparison to control, free radical-generating UVC irradiation. As hypothesized, CoQ10 dramatically reduced apoptotic cell death, attenuated ATP decrease, and hindered DNA fragmentation elicited by all apoptotic stimuli. This was accompanied by inhibition of mitochondrial depolarization, cytochrome c release, and caspase 9 activation. Because these events are consequent to mitochondrial PTP opening, we suggest that the antiapoptotic activity of CoQ10 could be related to its ability to prevent this phenomenon. - Can antioxidant diet supplementation protect against age-related mitochondrial damage?
Harman's free radical theory of aging and our electron-microscopic finding of an age-related mitochondrial degeneration in the somatic tissues of the insect Drosophila melanogaster as well as in the fixed postmitotic Leydig and Sertoli cells of the mouse testis led us to propose a mitochondrial theory of aging, according to which metazoan senescence may be linked to oxygen stress-injury to the genome and membranes of the mitochondria of somatic differentiated cells. These concepts attract a great deal of attention, since, according to recent work, the mitochondrial damage caused by reactive oxygen species (ROS) and concomitant decline in ATP synthesis seem to play a key role not only in aging, but also in the fundamental cellular process of apoptosis. Although diet supplementation with antioxidants has not been able to increase consistently the species-characteristic maximum life span, it results in significant extension of the mean life span of laboratory animals. Moreover, diets containing high levels of antioxidants such as vitamins C and E seem able to reduce the risk of suffering age-related immune dysfunctions and arteriosclerosis. Presently, the focus of age-related antioxidant research is on compounds, such as deprenyl, coenzyme Q10, alpha-lipoic acid, and the glutathione-precursors thioproline and N-acetylcysteine, which may be able to neutralize the ROS at their sites of production in the mitochondria. Diet supplementation with these antioxidants may protect the mitochondria against respiration-linked oxygen stress, with preservation of the genomic and structural integrity of these energy-producing organelles and concomitant increase in functional life span. - Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation
Different tissues display distinct sensitivities to defective mitochondrial oxidative phosphorylation (OXPHOS). Tissues highly dependent on oxygen such as the cardiac muscle, skeletal and smooth muscle, the central and peripheral nervous system, the kidney, and the insulin-producing pancreatic beta-cell are especially susceptible to defective OXPHOS. There is evidence that defective OXPHOS plays an important role in atherogenesis, in the pathogenesis of Alzheimer's disease, Parkinson's disease, diabetes, and aging. Defective OXPHOS may be caused by abnormal mitochondrial biosynthesis due to inherited or acquired mutations in the nuclear (n) or mitochondrial (mt) deoxyribonucleic acid (DNA). For instance, the presence of a mutation of the mtDNA in the pancreatic beta-cell impairs adenosine triphosphate (ATP) generation and insulin synthesis. The nuclear genome controls mitochondrial biosynthesis, but mtDNA has a much higher mutation rate than nDNA because it lacks histones and is exposed to the radical oxygen species (ROS) generated by the electron transport chain, and the mtDNA repair system is limited. Defective OXPHOS may be caused by insufficient fuel supply, by defective electron transport chain enzymes (Complexes I - IV), lack of the electron carrier coenzyme Q10, lack of oxygen due to ischemia or anemia, or excessive membrane leakage, resulting in insufficient mitochondrial inner membrane potential for ATP synthesis by the F0F1-ATPase. Human tissues can counteract OXPHOS defects by stimulating mitochondrial biosynthesis; however, above a certain threshold the lack of ATP causes cell death. Many agents affect OXPHOS. Several nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit or uncouple OXPHOS and induce the 'topical' phase of gastrointestinal ulcer formation. Uncoupled mitochondria reduce cell viability. The Helicobacter pylori induces uncoupling. The uncoupling that opens the membrane pores can activate apoptosis. Cholic acid in experimental atherogenic diets inhibits Complex IV, cocaine inhibits Complex I, the poliovirus inhibits Complex II, ceramide inhibits Complex III, azide, cyanide, chloroform, and methamphetamine inhibit Complex IV. Ethanol abuse and antiviral nucleoside analogue therapy inhibit mtDNA replication. By contrast, melatonin stimulates Complexes I and IV and Gingko biloba stimulates Complexes I and III. Oral Q10 supplementation is effective in treating cardiomyopathies and in restoring plasma levels reduced by the statin type of cholesterol-lowering drugs. - Virgin olive oil and coenzyme Q10 protect heart mitochondria from peroxidative damage during aging
The mitochondrial theory of aging suggests that this phenomenon is the consequence of random somatic mutations in mitochondrial DNA, induced by long-term exposure to free radical attack. There are two potential dietary means of delaying the effects of free radicals on cellular aging, i.e., enrichment of mitochondrial membranes with monounsaturated fatty acids and supplementation with antioxidants. We have performed a preliminary study on male rats, 6 or 12 month old, fed with diets differing in the nature of the fat (virgin olive oil or sunflower oil) and/or with antioxidant supplementation (coenzyme Q10), analysing hydroperoxide and coenzyme Q9 and Q10 in heart mitochondria. Preliminary results allow us to conclude that the CoQ10 dietetic supplementation as well as the enrichment of the cellular membranes with monounsaturated fatty acids, successfully protect mitochondrial membranes from aged rats against the free radical insult. - Mitochondrial coenzyme Q content and aging
The main objective of this study was to determine the nature of the relationship between aging and mitochondrial coenzyme Q (CoQ) content. Mitochondria in the heart, skeletal muscle, kidney and brain of the mouse varied in both the amount of total CoQ (CoQ9 + CoQ10) content as well as in the ratio of the CoQ9 to CoQ10. CoQ content declined with age only in the skeletal muscle. Caloric restriction (CR) resulted in an increase in the amount of CoQ9 in skeletal muscle mitochondria. This effect was partially reversible upon termination of the caloric restriction regimen. Results suggest that a decrease in mitochondrial CoQ content is an integral aspect of aging in skeletal muscle. - Mitochondrial bioenergetics in aging
Mitochondria are strongly involved in the production of reactive oxygen species, considered as the pathogenic agent of many diseases and of aging. The mitochondrial theory of aging considers somatic mutations of mitochondrial DNA induced by oxygen radicals as the primary cause of energy decline; experimentally, complex I appears to be mostly affected and to become strongly rate limiting for electron transfer. Mitochondrial bioenergetics is also deranged in human platelets upon aging, as shown by the decreased Pasteur effect (enhancement of lactate production by respiratory chain inhibition). Cells counteract oxidative stress by antioxidants; among lipophilic antioxidants, coenzyme Q is the only one of endogenous biosynthesis. Exogenous coenzyme Q, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases.
Q10 vermindert de productie van schadelijke oxy-LDL
- Ubiquinol-10 and total peroxyl radical trapping capacity of LDL lipoproteins during aging: the effects of Q-10 supplementation
Evidence is rapidly accumulating that oxidative modification of low density lipoprotein (LDL) may play an important role in the pathogenesis of atherosclerosis. In this study we measured the total peroxyl radical trapping capacity of human plasma LDL phospholipids (TRAPLDL) with a luminescent method. The study was carried out with 70 healthy volunteers, aged 28-77. In males an age-related decrease in TRAPLDL was observed. In the age group under 50 years the mean TRAPLDL was 31.36 +/- 1.45 pmol peroxyl radicals/nmol Pi; among those over 50 years it was significantly lower at 26.67 0.94 pmol/nmol Pi. As regards the components of TRAPLDL, the concentration of LDL-ubiquinol did not change and a non-significant decrease in the LDL-tocopherol concentration was detected with age. In females, the mean TRAPLDL, LDL-ubiquinol-10 and tocopherol concentrations did not differ between the age groups. When 17 of the participants were given coenzyme Q10 (Q10) supplementation, 100 mg/day, a highly significant increase in LDL-ubiquinol concentration was detected. Our results indicate that LDL antioxidant defenses tend to decrease with age in the Finnish male population. The decline is most significant in males under 50 years; in older age groups the values remain stable at a low level. Q10 supplementation doubles the number of ubiquinol-10-containing LDL molecules and may therefore have an inhibitory effect on LDL oxidation. - Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation
Ubiquinol-10 (CoQH2, the reduced form of coenzyme Q10) is a potent antioxidant present in human low-density lipoprotein (LDL). Supplementation of humans with ubiquinone-10 (CoQ, the oxidized coenzyme) increased the concentrations of CoQH2 in plasma and in all of its lipoproteins. Intake of a single oral dose of 100 or 200 mg CoQ increased the total plasma coenzyme content by 80 or 150%, respectively, within 6 h. Long-term supplementation (three times 100 mg CoQ/day) resulted in 4-fold enrichment of CoQH2 in plasma and LDL with the latter containing 2.8 CoQH2 molecules per LDL particle (on day 11). Approx. 80% of the coenzyme was present as CoQH2 and the CoQH2/CoQ ratio was unaffected by supplementation, indicating that the redox state of coenzyme Q10 is tightly controlled in the blood. Oxidation of LDL containing various [CoQH2] by a mild, steady flux of aqueous peroxyl radicals resulted immediately in very slow formation of lipid hydroperoxides. However, in each case the rate of lipid oxidation increased markedly with the disappearance of 80-90% CoQH2. Moreover, the cumulative radical dose required to reach this 'break point' in lipid oxidation was proportional to the amount of CoQH2 incorporated in vivo into the LDL. Thus, oral supplementation with CoQ increases CoQH2 in the plasma and all lipoproteins thereby increasing the resistance of LDL to radical oxidation.
Cholesterolverlagers van de statine klasse verlagen het Q10 niveau
- Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors
Coenzyme Q10 (ubiquinone) the essential mitochondrial redox-component and endogenous antioxidant, packaged into the LDL + VLDL fractions of cholesterol, has been suggested as an important anti-risk factor for the development of atherosclerosis as explained by the oxidative theory. Forty-five hypercholesterolemic patients were randomized in a double-blind trial in order to be treated with increasing dosages of either lovastatin (20-80 mg/day) or pravastatin (10-40 mg/day) over a period of 18 weeks. Serum levels of coenzyme Q10 were measured parallel to the levels of cholesterol at baseline on placebo and diet and during active treatment. A dose-related significant decline of the total serum level of coenzyme Q10 was found in the pravastatin group from 1.27 +/- 0.34 at baseline to 1.02 +/- 0.31 mmol/l at the end of the study period (mean +/- S.D.), P < 0.01. After lovastatin therapy the decrease was significant as well and more pronounced, from 1.18 +/- 0.36 to 0.84 +/- 0.17 mmol/l, P < 0.001. Although HMG-CoA reductase inhibitors are safe and effective within a limited time horizon, continued vigilance of a possible adverse consequence from coenzyme Q10 lowering seems important during long-term therapy. - Atorvastatin decreases the coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke
BACKGROUND: Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are widely used for the treatment of hypercholesterolemia and coronary heart disease and for the prevention of stroke. There have been various adverse effects, most commonly affecting muscle and ranging from myalgia to rhabdomyolysis. These adverse effects may be due to a coenzyme Q(10) (CoQ(10)) deficiency because inhibition of cholesterol biosynthesis also inhibits the synthesis of CoQ(10). OBJECTIVE: To measure CoQ(10) levels in blood from hypercholesterolemic subjects before and after exposure to atorvastatin calcium, 80 mg/d, for 14 and 30 days. DESIGN: Prospective blinded study of the effects of short-term exposure to atorvastatin on blood levels of CoQ(10). SETTING: Stroke center at an academic tertiary care hospital.Patients We examined a cohort of 34 subjects eligible for statin treatment according to National Cholesterol Education Program: Adult Treatment Panel III criteria. RESULTS: The mean +/- SD blood concentration of CoQ(10) was 1.26 +/- 0.47 micro g/mL at baseline, and decreased to 0.62 +/- 0.39 micro g/mL after 30 days of atorvastatin therapy (P<.001). A significant decrease was already detectable after 14 days of treatment (P<.001). CONCLUSIONS: Even brief exposure to atorvastatin causes a marked decrease in blood CoQ(10) concentration. Widespread inhibition of CoQ(10) synthesis could explain the most commonly reported adverse effects of statins, especially exercise intolerance, myalgia, and myoglobinuria. - Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients
Reduction of serum cholesterol levels with statin therapy decreases the risk of coronary heart disease. Inhibition of HMG-CoA reductase by statin results in decreased synthesis of cholesterol and other products downstream of mevalonate, which may produce adverse effects in statin therapy. We studied the reductions of serum ubiquinol-10 and ubiquinone-10 levels in hypercholesterolemic patients treated with atorvastatin. Fourteen patients were treated with 10 mg/day of atorvastatin, and serum lipid, ubiquinol-10 and ubiquinone-10 levels were measured before and after 8 weeks of treatment. Serum total cholesterol and LDL-cholesterol levels decreased significantly. All patients showed definite reductions of serum ubiquinol-10 and ubiquinone-10 levels, and mean levels of serum ubiquinol-10 and ubiquinone-10 levels decreased significantly from 0.81 +/- 0.21 to 0.46 +/- 0.10 microg/ml (p < 0.0001), and from 0.10 +/- 0.06 to 0.06 +/- 0.02 microg/ml (p = 0.0008), respectively. Percent reductions of ubiquinol-10 and those of total cholesterol showed a positive correlation (r = 0.627, p = 0.0165). As atorvastatin reduces serum ubiquinol-10 as well as serum cholesterol levels in all patients, it is imperative that physicians are forewarned about the risks associated with ubiquinol-10 depletion. - HMG-CoA reductase inhibitors in chronic heart failure: potential mechanisms of benefit and risk
HMG-CoA reductase inhibitors (statins) have been shown to reduce mortality and cardiovascular morbidity in patients with hyperlipidaemia and those with coronary artery disease. However, evidence for statin treatment in patients with chronic heart failure (CHF) remains a subject of debate. Patients with heart failure were generally excluded in the existing trials and a different patient population with a distinct pattern of morbidity and treatment was studied. In addition, no safety data are available for statins in patients with heart failure, where there are potential concerns about coenzyme Q10 depletion and excessive low-density lipoprotein reduction. This review summarises the clinical and preclinical evidence for potential beneficial effects of statins in CHF. In experimental systems, statins have been shown to improve cardiac function through antioxidative and anti-inflammatory action. Statins improve endothelial function, may reduce neurohormonal activation, and stimulate endothelial progenitor cells. Some of these effects occur independently of cholesterol lowering and can be explained by inhibition of isoprenylation of signal transducing proteins of the family of Rho guanosine triphosphatases. Two ongoing controlled randomised trials (CORONA [Controlled Rosuvastatin Multinational Study in Heart Failure] and GISSI-HF [Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico--Heart Failure]) will help us to assess whether the described beneficial effects of statins in heart failure outweigh the potential negative effects and translate into the reduction of clinical endpoints. - Antioxidants decreases the intensification of low density lipoprotein in vivo peroxidation during therapy with statins
The oxidative modification of low density lipoprotein (LDL) is thought to play an important role in atherogenesis. Drugs of beta-hydroxy-beta-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) family are usually used as a very effective lipid-lowering preparations but they simultaneously block biosynthesis of both cholesterol and ubiquinone Q10 (coenzyme Q), which is an intermediate electron carrier in the mitochondrial respiratory chain. It is known that reduced form of ubiquinone Q10 acts in the human LDL as very effective natural antioxidant. Daily per os administration of HMG-CoA reductase inhibitor simvastatin to rats for 30 day had no effect on high-energy phosphates (adenosin triphosphate, creatine phosphate) content in liver but decreased a level of these substances in myocardium. We study the Cu2+-mediated susceptibility of human LDL to oxidation and the levels of free radical products of LDL lipoperoxidation in LDL particles from patients with atherosclerosis after 3 months treatment with natural antioxidants vitamin E as well as during 6 months administration of HMG-CoA reductase inhibitors such as pravastatin and cerivastatin in monotherapy and in combination with natural antioxidant ubiquinone Q10 or synthetic antioxidant probucol in a double-blind placebo-controlled trials. The 3 months of natural antioxidant vitamin E administration (400 mg daily) to patients did not increase the susceptibility of LDL to oxidation. On the other hand, synthetic antioxidant probucol during long-time period of treatment (3-6 months) in low-dose (250 mg daily) doesn't change the lipid metabolism parameters in the blood of patients but their high antioxidant activity was observed. Really, after oxidation of probucol-contained LDL by C-15 animal lipoxygenase in these particles we identified the electron spin resonance signal of probucol phenoxyl radical that suggests the interaction of LDL-associated probucol with lipid radicals in vivo. We observed that 6 months treatment of patients with pravastatine (40 mg daily) or cerivastatin (0.4 mg daily) was followed by sufficiently accumulation of LDL lipoperoxides in vivo. In contrast, the 6 months therapy with pravastatin in combination with ubiquinone Q10 (60 mg daily) sharply decreased the LDL initial lipoperoxides level whereas during treatment with cerivastatin in combination with probucol (250 mg daily) the LDL lipoperoxides concentration was maintained on an invariable level. Therefore, antioxidants may be very effective in the prevention of atherogenic oxidative modification of LDL during HMG-CoA reductase inhibitors therapy.
Het gebruik van Q10 bij de preventie van hart en vaatziekten
- Coenzyme Q10 and cardiovascular disease: a review
This article provides a comprehensive review of 30 years of research on the use of coenzyme Q10 in prevention and treatment of cardiovascular disease. This endogenous antioxidant has potential for use in prevention and treatment of cardiovascular disease, particularly hypertension, hyperlipidemia, coronary artery disease, and heart failure. It appears that levels of coenzyme Q10 are decreased during therapy with HMG-CoA reductase inhibitors, gemfibrozil, Adriamycin, and certain beta blockers. Further clinical trials are warranted, but because of its low toxicity it may be appropriate to recommend coenzyme Q10 to select patients as an adjunct to conventional treatment. - Overview of the use of CoQ10 in cardiovascular disease
The clinical experience in cardiology with CoQ10 includes studies on congestive heart failure, ischemic heart disease, hypertensive heart disease, diastolic dysfunction of the left ventricle, and reperfusion injury as it relates to coronary artery bypass graft surgery. The CoQ10-lowering effect of HMG-CoA reductase inhibitors and the potential adverse consequences are of growing concern. Supplemental CoQ10 alters the natural history of cardiovascular illnesses and has the potential for prevention of cardiovascular disease through the inhibition of LDL cholesterol oxidation and by the maintenance of optimal cellular and mitochondrial function throughout the ravages of time and internal and external stresses. The attainment of higher blood levels of CoQ10 (> 3.5 micrograms/ml) with the use of higher doses of CoQ10 appears to enhance both the magnitude and rate of clinical improvement. In this communication, 34 controlled trials and several open-label and long-term studies on the clinical effects of CoQ10 in cardiovascular diseases are reviewed. - Therapy with coenzyme Q10 of patients in heart failure who are eligible or ineligible for a transplant
Twenty years of international open and seven double blind trials established the efficacy and safety of coenzyme Q10 (CoQ10) to treat patients in heart failure. In the U.S., ca. 20,000 patients under 65 years are eligible for transplants, but donors are less than 1/10th of those eligible, and there are many more such patients over 65, both eligible and ineligible. We treated eleven exemplary transplant candidates with CoQ10; all improved; three improved from Class IV to Class I; four improved from Classes III-IV to Class II; and two improved from Class III to Class I or II. After CoQ10, some patients required no conventional drugs and had no limitation in lifestyle. The marked improvement is based upon correcting myocardial deficiencies of CoQ10 which improve mitochondrial bioenergetics and cardiac performance. These case histories, and very substantial background proof of efficacy and safety, justify treating with CoQ10 patients in failure awaiting transplantation. - Response of patients in classes III and IV of cardiomyopathy to therapy in a blind and crossover trial with coenzyme Q10
Coenzyme Q10 (CoQ10), a biochemically established redox component of respiration including the coupled mechanisms of electron transfer and oxidative phosphorylation, is naturally present in the human myocardium. A double-blind and double-crossover trial has been conducted by administering CoQ10 and a matching placebo orally to two groups of patients having class III or IV cardiomyopathy (classification according to criteria of the New York Heart Association). Group A received CoQ10 and then placebo; group B received placebo and then CoQ10. Blood levels of CoQ10 and cardiac function were determined at 0 and 4 weeks (control stabilization period) and at 16 and 28 weeks (after the 12-week CoQ/placebo-treatment periods). For group A, significant increases in CoQ10 blood levels and cardiac function occurred during CoQ10 treatment and then decreased during crossover to placebo. For group B, there was no change in CoQ10 blood levels and cardiac function during placebo treatment, but increases in both parameters occurred in crossover to CoQ10. These patients, steadily worsening and expected to die within 2 years under conventional therapy, generally showed an extraordinary clinical improvement, indicating that CoQ10 therapy might extend the lives of such patients. This improvement could be due to correction of a myocardial deficiency of CoQ10 and to enhanced synthesis of CoQ10-requiring enzymes. - Dietary antioxidants in preventing atherogenesis
Several naturally occurring constituents have received considerable attention because of their potential antioxidant activity. Consuming a diet rich in natural antioxidants has been associated with prevention from and/or treatment of atherosclerosis. Bioactive components of food, which are of special interest, include the Vitamins E and C, polyphenols, carotenoids-mainly lycopene and beta-carotene, and coenzyme Q10, featured by antioxidant properties. Antioxidant therapy is supposed to be effective in the early stages of atherosclerosis by preventing LDL oxidation and the oxidative lesion of endothelium. This review focuses on the effect of dietary antioxidants pertained to LDL oxidation and to the vascular endothelial dysfunction. Now that the human genome has been completely sequenced, genetic factors involved in oxidation may open new horizons to identify persons at risk for cardiovascular disease, allowing effective dietary intervention strategies to recover normal homeostasis and to prevent diet-related implications. On this basis, current studies on the action of selected antioxidant nutraceuticals on the activity of transcription factors, such as final targets in the signal transduction cascade and gene regulation, may emerge into new treatment concepts.
Het gebruik van Q10 bij huidverzorging
- Stimulation of skin's energy metabolism provides multiple benefits for mature human skin
As an organism ages, there is a decline in mitochondrial function and cellular energy balance. This decline is both accelerated by and can cause the formation of reactive oxygen species (ROS) that damage nuclear and mitochondrial DNA, lipid membranes as well as structural and catalytic proteins, especially those involved in energetic pathways of cells. Further, ROS have also been linked to some of the detrimental skin changes that occur as a result of photoaging. We have previously shown that levels of Coenzyme Q10 (CoQ10), a component of the respiratory chain in mitochondria, are reduced in skin cells from aging donors, and that topical supplementation can ameliorate processes involved in skin aging. Creatine is another important component of the cellular energy system and phosphocreatine, its phosphorylated form, functions as a reservoir for high energy phosphates. Unfortunately the creatine system and thus the energy storage mechanism in skin are negatively affected by aging and conditions of oxidative stress. This article reviews some of our in vivo data about the synergistic effects of combining a stabilized form of Creatine with CoQ10 and clearly depicts their beneficial effects as active ingredients in topical formulations. - Coenzyme Q10--its importance, properties and use in nutrition and cosmetics
Coenzyme Q10, or ubiquinone, is a nutrient--a vitamin-like substance which plays a crucial role in the generation of cellular energy an in free radical scavenging in the human body. After the age of 35 to 40, the organism begins to lose its ability to synthesize Co Q10 from food and its deficiency develops. Ageing, poor eating habits, stress and infection--they all affect our ability to provide adequate amounts of Co Q10. Therefore Co Q10 supplementation may be very helpful for the organism. The present summarizing study reports the history of the discovery and research, properties, biochemical effects, dosage of Co Q10 deficiency in the human body. A possible use of Co Q10 as a dietary supplement and an ingredient for topical cosmetic products is described. - Coenzyme Q10, a cutaneous antioxidant and energizer
The processes of aging and photoaging are associated with an increase in cellular oxidation. This may be in part due to a decline in the levels of the endogenous cellular antioxidant coenzyme Q10 (ubiquinone, CoQ10). Therefore, we have investigated whether topical application of CoQ10 has the beneficial effect of preventing photoaging. We were able to demonstrate that CoQ10 penetrated into the viable layers of the epidermis and reduce the level of oxidation measured by weak photon emission. Furthermore, a reduction in wrinkle depth following CoQ10 application was also shown. CoQ10 was determined to be effective against UVA mediated oxidative stress in human keratinocytes in terms of thiol depletion, activation of specific phosphotyrosine kinases and prevention of oxidative DNA damage. CoQ10 was also able to significantly suppress the expression of collagenase in human dermal fibroblasts following UVA irradiation. These results indicate that CoQ10 has the efficacy to prevent many of the detrimental effects of photoaging.
Andere toepassingen van Q10
- Coenzyme q10: a review of its promise as a neuroprotectant
Coenzyme Q10 (CoQ10) is a powerful antioxidant that buffers the potential adverse consequences of free radicals produced during oxidative phosphorylation in the inner mitochondrial membrane. Oxidative stress, resulting in glutathione loss and oxidative DNA and protein damage, has been implicated in many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Experimental studies in animal models suggest that CoQ10 may protect against neuronal damage that is produced by ischemia, atherosclerosis and toxic injury. Though most have tended to be pilot studies, there are published preliminary clinical trials showing that CoQ10 may offer promise in many brain disorders. For example, a 16-month randomized, placebo-controlled pilot trial in 80 subjects with mild Parkinson's disease found significant benefits for oral CoQ10 1,200 mg/day to slow functional deterioration. However, to date, there are no published clinical trials of CoQ10 in Alzheimer's disease. Available data suggests that oral CoQ10 seems to be relatively safe and tolerated across the range of 300-2,400 mg/day. Randomized controlled trials are warranted to confirm CoQ10's safety and promise as a clinically effective neuroprotectant.
SITE MAP
Maagdarmstoornissen: Candida infectie - Prikkelbaredarmsyndroom - Crohn - Colitus Ulcerosa - CVS/ME: Chronische vermoeidheid Syndroom - Diabetische complicaties: Bloeduiker stabilisatie - Neuropathie - Retinopathie - Nefropathie - Hart- en vaatziekten: Cardiomyopathie en Hartfalen - Hoge bloeddruk - Cholesterol verlaging - Aderverkalking (atherosclerose) - Spataderen - Levensverlenging: 100 jaren jong - DHEA - Melatonine - 65+ - Kanker: - Ondersteuningstherapie bij kanker - Bot en gewrichtsaandoeningen: - Artrose - Artritis - Osteoporose - Fibromyalgie: - Fibromyalgie - Urinewegaandoeningen: - Prostaatklachten - Blaasontsteking - Vrouwenklachten: Menopauze - Premenstrueelsyndroom - Overgewicht: - Overgewicht - SLIM - Oogaandoeningen: Staar - Slecht zien Andere artikelen: - HPU - Astma - Multiple Sclerose - Psoriasis - Depressie
Maagdarmstoornissen: Candida infectie - Prikkelbaredarmsyndroom - Crohn - Colitus Ulcerosa - CVS/ME: Chronische vermoeidheid Syndroom - Diabetische complicaties: Bloeduiker stabilisatie - Neuropathie - Retinopathie - Nefropathie - Hart- en vaatziekten: Cardiomyopathie en Hartfalen - Hoge bloeddruk - Cholesterol verlaging - Aderverkalking (atherosclerose) - Spataderen - Levensverlenging: 100 jaren jong - DHEA - Melatonine - 65+ - Kanker: - Ondersteuningstherapie bij kanker - Bot en gewrichtsaandoeningen: - Artrose - Artritis - Osteoporose - Fibromyalgie: - Fibromyalgie - Urinewegaandoeningen: - Prostaatklachten - Blaasontsteking - Vrouwenklachten: Menopauze - Premenstrueelsyndroom - Overgewicht: - Overgewicht - SLIM - Oogaandoeningen: Staar - Slecht zien Andere artikelen: - HPU - Astma - Multiple Sclerose - Psoriasis - Depressie