Melatonine
- Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy
Melatonin is a prime candidate for slowing the aging process and targeting its underlying pathology. Melatonin has profound gerontoprotective and antioxidant activities. Because enhanced oxidative stress plays a crucial role in the aging process and chronic diseases associated with senescence, the adminstration of a potent amphiphilic antioxidant agent with high bioavailability such as melatonin may become a promising, safe, and effective intervention strategy to slow aging and the initiation and progression of age-related disorders. - Melatonin reduces oxidant damage and promotes mitochondrial respiration: implications for aging
Melatonin has a number of properties as a consequence of which it could be beneficial to animals as they age. Of particular interest are its ubiquitous actions as a direct and indirect antioxidant and free radical scavenger. These findings, coupled with diminished melatonin production in advanced age, has prompted scientists to consider melatonin in the context of aging. As of this writing there is no definitive evidence to prove that melatonin alters the rate of aging, although data relating to melatonin deferring some age-related degenerative conditions is accumulating rapidly. - Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans
This brief resume enumerates the multiple actions of melatonin as an antioxidant. Numerous in vitro and in vivo studies have documented the ability of both physiological and pharmacological concentrations to melatonin to protect against free radical destruction. Furthermore, clinical tests utilizing melatonin have proven highly successful; because of the positive outcomes of these studies, melatonin's use in disease states and processes where free radical damage is involved should be increased. - Controversial endocrine interventions for the aged
Specific endocrine changes occur with the ageing process. The last decade has witnessed significant progress in the basic and clinical science of ageing, thereby rejuvenating the interest in anti-ageing medicine, especially that of hormone replacement, by medical professionals and the lay public. However, endocrine manipulation as a therapeutic strategy for ageing is still evolving as continuing research attempts to answer the many questions of what it can achieve at the risk of incurring unknown long-term adverse effects. The current day doctor is confronted with a host of options, and will benefit from a synopsis of the latest evidence before making the most appropriate decision for aged patients seeking hormonal replacement therapy as a means to counter the effects of ageing. This review aims to give a rapid overview of the endocrine profile of geriatric population and the studies on the more controversial hormonal replacement therapies for the aged. - Melatonin and nitric oxide
Melatonin is a product of the amino acid tryptophan in the pineal gland. Once synthesized, the specific mechanisms governing the release of melatonin from the pineal gland and its functions are largely unknown. Besides its regulatory role in circadian rhythms in mammals, because of its widespread subcellular distribution, melatonin contributes to the reduction of oxidative damage in both the lipid and the aqueous environments of the cell. This postulate is widely supported by the experimental observations showing that melatonin protects lipids in membranes, proteins in the cytosol, and DNA in the nucleus and mitochondria from free radical damage. Melatonin thus reduces the severity of disease conditions where free radicals are implicated. The direct free radical scavenging effects of melatonin are receptor independent. It has recently been shown that it has an ability to scavenge free radicals, including hydroxyl radicals, hydrogen peroxide, peroxyl radicals, singlet oxygen and nitric oxide (NO) and peroxynitrite anion. An excessive amount of NO, a free radical which is generated by the inducible form of NO synthase, is known to cause cytotoxic changes in cells. Hence, NO synthase is considered a pro-oxidative enzyme, and any factor that reduces its activity would be considered an antioxidant. Recent studies have shown that melatonin inhibits the activity of NO synthase, beside its NO and peroxynitrite scavenging activity. Thus, inhibition of NO production may be another means whereby melatonin reduces oxidative damage under conditions, such as ischemia-reperfusion, sepsis, etc, where NO seems to be important in terms of the resulting damage. - Melatonin as antioxidant, geroprotector and anticarcinogen
In rats, melatonin treatment increased survival of male and female rats. In D. melanogaster, supplementation of melatonin to nutrient medium during developmental stages produced contradictory results, but and increase in the longevity of fruit flies has been observed when melatonin was added to food throughout the life span. In mice and rats, melatonin is a potent antioxidant both in vitro and in vivo. Melatonin alone turned out neither toxic nor mutagenic in the Ames test and revealed clastogenic activity at high concentration in the COMET assay. Melatonin has inhibited mutagenesis and clastogenic effect of a number of indirect chemical mutagens. - Role of melatonin in Alzheimer-like neurodegeneration
Alzheimer disease (AD), an age-related neurodegenerative disorder with progressive loss of memory and deterioration of comprehensive cognition, is characterized by extracellular senile plaques of aggregated beta-amyloid (Abeta), and intracellular neurofibrillary tangles that contain hyperphosphorylated tau protein. Recent studies showed that melatonin, an indoleamine secreted by the pineal gland, may play an important role in aging and AD as an antioxidant and neuroprotector. - Role of melatonin in neurodegenerative diseases
The pineal product melatonin has remarkable antioxidant properties. It scavenges hydroxyl, carbonate and various organic radicals, peroxynitrite and other reactive nitrogen species. Melatonyl radicals formed by scavenging combine with and, thereby, detoxify superoxide anions in processes terminating the radical reaction chains. Melatonin also enhances the antioxidant potential of the cell by stimulating the synthesis of antioxidant enzymes like superoxide dismutase, glutathione peroxidase and glutathione reductase, and by augmenting glutathione levels. The decline in melatonin production in aged individuals has been suggested as one of the primary contributing factors for the development of age-associated neurodegenerative diseases, e.g., Alzheimer's disease. Melatonin has been shown to be effective in arresting neurodegenerative phenomena seen in experimental models of Alzheimer's disease, Parkinsonism and ischemic stroke. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels, and safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. Therapeutic trials with melatonin have been effective in slowing the progression of Alzheimer's disease but not of Parkinson's disease. Melatonin's efficacy in combating free radical damage in the brain suggests that it may be a valuable therapeutic agent in the treatment of cerebral edema after traumatic brain injury. - The human pineal gland and melatonin in aging and Alzheimer's disease
Melatonin not only plays an important role in the regulation of circadian rhythms, but also acts as antioxidant and neuroprotector that may be of importance in aging and Alzheimer's disease (AD). Circadian disorders, such as sleep-wake cycle disturbances, are associated with aging, and even more pronounced in AD.
SITE MAP
Maagdarmstoornissen: Candida infectie - Prikkelbaredarmsyndroom - Crohn - Colitus Ulcerosa - CVS/ME: Chronische vermoeidheid Syndroom - Diabetische complicaties: Bloeduiker stabilisatie - Neuropathie - Retinopathie - Nefropathie - Hart- en vaatziekten: Cardiomyopathie en Hartfalen - Hoge bloeddruk - Cholesterol verlaging - Aderverkalking (atherosclerose) - Spataderen - Levensverlenging: 100 jaren jong - DHEA - Melatonine - 65+ - Kanker: - Ondersteuningstherapie bij kanker - Bot en gewrichtsaandoeningen: - Artrose - Artritis - Osteoporose - Fibromyalgie: - Fibromyalgie - Urinewegaandoeningen: - Prostaatklachten - Blaasontsteking - Vrouwenklachten: Menopauze - Premenstrueelsyndroom - Overgewicht: - Overgewicht - SLIM - Oogaandoeningen: Staar - Slecht zien Andere artikelen: - HPU - Astma - Multiple Sclerose - Psoriasis - Depressie
Maagdarmstoornissen: Candida infectie - Prikkelbaredarmsyndroom - Crohn - Colitus Ulcerosa - CVS/ME: Chronische vermoeidheid Syndroom - Diabetische complicaties: Bloeduiker stabilisatie - Neuropathie - Retinopathie - Nefropathie - Hart- en vaatziekten: Cardiomyopathie en Hartfalen - Hoge bloeddruk - Cholesterol verlaging - Aderverkalking (atherosclerose) - Spataderen - Levensverlenging: 100 jaren jong - DHEA - Melatonine - 65+ - Kanker: - Ondersteuningstherapie bij kanker - Bot en gewrichtsaandoeningen: - Artrose - Artritis - Osteoporose - Fibromyalgie: - Fibromyalgie - Urinewegaandoeningen: - Prostaatklachten - Blaasontsteking - Vrouwenklachten: Menopauze - Premenstrueelsyndroom - Overgewicht: - Overgewicht - SLIM - Oogaandoeningen: Staar - Slecht zien Andere artikelen: - HPU - Astma - Multiple Sclerose - Psoriasis - Depressie